
Lecture 10
Macros

Computing platforms
Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

Repeating command sequences

ldi r0, label
ld r0, r0

• This sequence is repeated in many programs over and over
• In some ISA (CISC processors), there is a single command for this,
• But CISC hardware is much more complex
• Can we make a single [pseudo]instruction in software?

Yes we can

macro ldv/2
ldi $1, $2
ld $1, $1

mend
• ldv is macro (pseudo instruction) name
• /2 is number of parameters
• $1 and $2 are parameters

ldv r0, label

Macro (macro definition)

• Macroprocessing is essentially a text substitution
ldv r0, label

• $1=r0, $2=label
macro ldv/2

ldi $1, $2
ld $1, $1

mend

ldi r0, label
ld r0, r0

Macroprocessing

• Substituting macros happens before or during compilation
• Unlike subroutine call which happens at runtime

• Logically, it is always happens before compilaton,
• because result of macro substitution is compiled like normal code
• But the result of substitution can contain other macros…
• Many macro languages do not support recursive macros
• And practically none allow forward macro reference
• I.e. you always must define a macro before it can be used

(unlike label or subroutine)

Why use macros?

• To make your program shorter (== easier to read)
• To make names for common idioms (instruction sequences)
• To avoid copy-paste code reuse
• Why copy-paste code reuse is bad?
• If you find error in copypasted code,
• you must find all copies
• and fix them separately

Names for common idioms

macro clr/1. # clear a register
xor $1, $1

mend
macro test/1. # set Z and N flags according to register values

mov $1, $1
mend
macro bnle/1

bgt $1
mend

How not to use macros

macro incmem/1
ldi r0, $1
ld r0, r1
inc r1
st r0, r1

mend
• Looks good, but uses two registers
• And we cannot avoid this

How not to use macros (continue)

macro incmem/1 # “safe” version
push r0
push r1
ldi r0, $1
ld r0, r1
inc r1
st r0, r1
pop r1
pop r0

mend

Why it is a bad idea?

incmem a
incmem b

• Result of this macro substitution would have
• two extra push and
• two extra pop

• No good for a machine with 256 bytes of memory!
• Compilers often have so called peephole optimization
• finding redundant commands in compiled code and removing them

• But assemblers usually literally assemble anything you wrote

So, macro is not universal tool

• It has strong limitations
• Sometimes, people are saying “compilers are just advanced

macroprocessors”, but this is not correct
• Compilers (Level 4 platforms) are much more complex entities than

macroprocessors
• But macros are simple and powerful (if used with judgement)
• There are pretty complex languages implemented as macros

(LaTeX for example)

Nonce (apostrophe after a label name)
macro strcpy/2

push r2
push $1
push $2

loop’: ld $1,r2
inc $1
st $2,r2
inc $2
move r2,r2
bne loop’
pop $1
pop $2
pop r2

mend

What if one of parameters will be r2?

unique $1,$2,temp
push ?temp

• Unique directive selects a register which is different from $1 and $2
• temp will be local symbol inside of the macro definition
• ? designates reference to such a symbol
• If we use ?temp instead of r2 in strcpy macro,

it won’t conflict with parameters
• Unique is not the only way to generate such symbols

Wait, there is more!

• Actually, CdM-8 “3 1/2” constructs, like if and while, are macros
if

cmp r0,r1
is le

move r0,r2
else

move r1,r2
fi

cmp r0,r1
bgt else
move r0,r2
br done

else:
move r1,r2

done:

But how???

• It is easy to prove that you cannot implement if-is-fi
by simple text substitution (even with help of nonce and unique)
• To implement if-is-fi macros, you need to
• Invent an unique name for a label
• Remember it (somehow transfer it between is and fi macro definitions)
• For if-is-else-fi, you need two unique labels
• And how do you do nested if?

Nonce and unique are not enough!

macro if/0
mpush _’

mend
macro is/1

mpop id
mpush alt?id
bn$1 alt?id

mend
macro else/0

mpop where
mpush new?where
br new?where

?where:
mend
macro fi/0

mpop term
?term:
mend

How it all works?

• mpush and mpop are operations on macro stack
• Macro stack is a LIFO memory existing at compilation time
• mpush and mpop are directives, not instruction mnemonics
• mpush _’ engages a nonce and pushes it to stack

Let’s see this on the example

macro if/0 # MS is short for [top of] Macro Stack
mpush _’ # MS=_1

mend
macro is/1

mpop id # id=_1
mpush alt?id # MS=alt_1
bn$1 alt?id

mend
macro else/0

mpop where # where=alt_1
mpush new?where # MS=newalt_1
br new?where

?where: # label will be alt_1
mend
macro fi/0

mpop term # term=newalt_1 or alt_1 (without else)
?term: # label will be newalt_1 or alt_1
mend

But what about loops?

• Loops have break/continue which can be used inside of the if blocks
• Break and continue cannot just pop the label from top of the stack
• To deal with this, loops use second macro stack,

referenced by 1mpush and 1mpop directives
• Actually, there are three macro stacks in CdM-8 assembler

Another pair of useful macros

• Save and restore
save r1

save r2
save r3

do something with r1,r2,r3
restore

restore
restore

• Much harder to restore registers in wrong order!

